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Abstract: Two point boundary value problems will occur in many fields of science 

and Engineering fields. With the advent of modernized technology like parallel 

computing, Algorithm analysis, development and its associate coding, many 

numerically approximate results one can generate. Similarly we made an attempt to 

solve a differential equation with numerical integration method approach. In the 

process Thomas algorithm is a powerful aid to get the problem simplification is 

nothing but back substitution of the entry values.  Selected singularly perturbed 

differential equation numerically computed and compared its reliability with 

available closed form solutions and found this method is a reasonably good 

approximation method. 

Keywords: Two point boundary value problem, Perturbation parameter, 

approximation method, Thomas algorithm. 

Introduction : 

Two point boundary value problems can occur very frequently in various fields of Science 

and Engineering. Since closed form solutions for most of these problems are not available so 

one has to find to get the solutions of such problems in approximation methodology. The 

availability of high speed digital computations has made it possible to consider and solve 

such a work, when the chosen approximation method involves computation. The most 

frequently adoptable approximate methods for solving such problems are Finite difference 

Methods, numerical quadrature method and Finite volume Methods etc. 

In this present research problem a two point boundary value problem with derivative 

boundary conditions are considered. Taylor’s series approximation is  used to reduce a second 

order differential equation into a first order differential equation subsequently the  first order 

differential equation  transformed into a finite difference equation.  Numerical integration 

method and subsequently Thomas algorithm employed to get the approximate solution in the 
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defined region at each mesh point for the various perturbation parameter values.  It is 

observed that   numerically computed solutions are in good agreement on par with the 

available closed form solutions. 

For the sake of convenience we call our method the ‘Numerical Integration Method’.  To set 

the stage for the numerical integration method, we consider the following Governing linear 

Convection-diffusion two-point boundary value problem: 

                    1x0  ; g(x)  b(x)y(x) (x)
'

y a(x)  (x)
''

y ε                 (1) 

With y (0) =0 y ‘(1) = �� , y(1) =� (Derivative boundary conditions)                                 (2) 

 ��   value is only useful to fix the deviation  parameter value approximately.   

Where   is a small positive parameter called diffusion parameter which lies in the interval 

0<� << 1 i.e very close to zero, α and β are given constants; a(x) , b(x) and g(x) considered 

to be sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that 

a(x) ≥ M >  0 throughout the interval [0,1], where M is some positive constant.  This 

assumption purely implies that the boundary layer will be in the neighborhood of x=0. 

Let δ be a small positive deviating argument (0<  δ ≤ 1).  By applying Taylor series 

expansions in the neighborhood of the point x, we have 

                            )x(''y 
2

2
)x('y )x(y)x(y


                 (3) 

and consequently, Eqn. (1) is replaced by the following first-order differential equation with a 

small deviating argument. 

(x)]'y δy(x)-δ)-y(x [
2δ

2
   (x)

''
y   (x)'y δy(x)-δ)-y(x  (x)''y 

2

2δ
 So that 

(1)  1  x 0  ,  g(x)  y(x) b(x) (x)'y a(x) ] (x)'y δy(x)-δ)-y(x [
2δ

2ε
  

2 ε y(x-δ) -2 ε y(�)  + 2 εδy′(�)  + �(�)y′(�)δ�  + �(�) y(�)δ�  = δ� g(�) 

⇒ [2εδ + �(�)δ�] (�′(�))  + [�(�)δ�-2ε] y(�)  = δ� g(�) -2 ε y(x-δ) 

⇒ �′(�)  =  
�2 �(�)-2 ε y(x-δ)

2 εδ��(�)δ�  y(x-δ)  + 
(2 ε-b(�)δ�)

2 εδ��(�)δ�   y(�)  

⇒ �′(�)  =  
-2 ε

2 εδ��(�)δ�  y(x-δ)  + 
2ε-b(�)δ�

2 εδ��(�)δ�  y(�)  +
�� g(�)

2  εδ��(�)δ�                                   (4)  

(4) can be re-written as 

                            1xδfor  r(x) y(x) q(x) δ)-y(x p(x) (x)'y                (5)  
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  Where p(x) = 
���

�����(�)��         (6) 

                        q(�)  =  
2ε��� b(�)

2 εδ��� a(�)
        (7) 

              �(�)  =  
�� g(�) 

2 εδ��� a(�)
        (8) 

We now divide the interval [0,1] into N equal parts with mesh size h, i.e., h=1/N 

and  xi = ih for  i= 1,2,3…….N.  Integrating equation (5) in [xi-1,xi+1] we get 

�(���� )-y ��i-1 � =     ∫ ��(�) y�x-δ� + �(�)�(�) + �(�)� dx   � = 1,2,3         
����

����
       (9) 

  By implementing the Newton-Cotes approximate formula with  n=2 i.e.  by  the virtue of 

Simpson’s  one-third  rule , dividing the sub-intervals which are multiples of two then 

�(����) -y(�i-1)  =
�

�
[�(����)�(���� -δ) + 4 p(��) y(�� − �)  + �(�i-1 -δ) 

+(���� + ����) ��(���� − �) + � ��i-1 − ��� + �(����) y(����) + �(����) y(�i-1)  +

�(����)�(����) + 4q(��)�(��) + �(����)�(����) + �(����) + 4r(��) + �(����) +

�(����) + �(����) ]                                                                                                         (10)    

Again by virtue of Taylor’s series expansion  

we have (x)'y δ-y(x)    δ)y(x  Approximating )(y' x  by linear interpolation method  

  y(xi – �)      ≅  y(��) −
�[�(���� )-y(�i-1)]

��
 

             )y(x 
2h

- )y(x
2h

  )y(x                1i1-ii 


           (11) 

Similarly          )y(x 
h

δ
- )y(x )

h

δ
(1        δ)y(x i1-i1i 

   
(12)

                            )
i

y(x 
h

 )
1i

y(x )
h

-(1          )1(


 


ixy                                         (13) 

Making use of (11),(12) and (13)  in (10), it  can be obtained as 

                      D  y Cy By A i1iiii1-ii                   (14) 

Where              q
3

h2
)

h

δ
)(1p(p

3

h
)

h2

δ
(1p

3

h
- 

3

p2
1  A 1i1i1i1i

i
i  




                
(15) 

                  
                   

3

hq4

3

hp4
p

33

p 
   B ii

1i
1-i

i 





                              (16) 

                  
            q

3

h2
- )

h

δ
)(1p(p

3

h

3

δp2
 )

h

δ
(1p

3

h
1   C 1i1i1i

i
1ii  

       
(17) 

       Di = 
��

�
[ri+1 + 2ri +ri-1]                                          (18) 
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Here yi =y(xi ), pi =p(xi), qi =q(xi) and ri =r(xi).  Equation (14) gives a system of (n-1) 

equations with (n+1) unknown’s y0 to yN.  The two given boundary conditions (2) together 

with these (n-1) equations are  in this case  sufficient to solve for the unknowns y0  to  yn.   The 

solution of the Tri-diagonal system (14) can be obtained by using the efficient algorithm due 

to Thomas Algorithm. In this algorithm we set a difference relation of the form

                                               T  y W y i1iii                                (19) 

Where Wi  and Ti  correspond to W(x i ) and T (x i ) are to be determined from (20)  

we ha����  = Wi-1y�  + �i-1             (20) 

Substituting (20) in (14) we have 

                 
WAB

DTA
 y

WAB

C
  y

1iii

i1ii
1i

1iii

i
i






 





                  (21) 

By comparing similar equations 

                                   
WAB

C
W

1iii

i
i


       (22) 

                          
WAB

DTA
T

1iii

i1ii
i








        (23) 

To solve these recurrence relations for i=1,2, 3,…….N-1; we need to know the initial 

conditions for W0 and T0. This can be done by considering (2) function value can be 

calculated with the help of interpolation. 

�� = � = ���� + ��           (24) 

If we choose W0= 0, then T0 = .  With these initial values , we compute sequentially Wi and 

Ti for i=1,2,3,….N-1;from (23) and (24) in the forward process and then obtain yi  in the 

backward process from (19) using the equation  ( 2). 

Repeat the numerical scheme for different choices of   (deviating argument) satisfying the 

conditions ) 0( 1  , until the solution profiles do not differ significantly from iteration to 

iteration. So that initially we are selected small value of deviating argument For 

computational point of view and convergent solution. 

 We use an absolute error criterion, |�(�)��� − �(�)�| ≤ �, 0 ≤ � ≤ 1    (25) 

 Where mxy )( the solution for the mth iterate of , and   is the prescribed tolerance bound    

considered. 
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 COMPUTED PROBLEMS 

 For testing the applicability of the numerical integration method; we have applied it to linear 

singular perturbation problems with left-end boundary layer.  These examples have been 

chosen. Reason behind this is they have been widely discussed in the literature and 

approximate solutions are available for comparison. 

Example 1: 

Consider the following homogeneous singularly perturbed   problem from Kevorkian and 

Cole [36], p.33, Eq. (2.3.26) and (2.3.27) with α =0: 

� y '' (x) + y ' (x) = 0 , 0≤ � ≤ 1 with y(0)=0 and y(1)=1 . The exact solution is given by 

analytical method y(x) = 
(���(��/�))

(���(��/�))
 

The computational results are presented in Table 1(a) and 1(b) for  = 10-3, 10-4 respectively 

with the known �� value which selects   approximately which is very  close to zero. As   is 

small so that we can observe more accuracy.    

Computational results for Example 1. 

(a) =10-3, h=0.01.   

    Table 1(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 
 

y(x) Exact 
solution =0.008 =0.009 =0.01 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9876486 0.9899944 0.9917358 1.0000000 

0.04 0.9998419 0.9998944 0.9999319 1.0000000 

0.06 0.9999925 0.9999934 0.9999995 1.0000000 

0.08 0.9999945 0.9999945 1.0000000 1.0000000 

0.10 0.9999946 0.9999948 1.0000000 1.0000000 

0.20 0.9999954 0.9999952 1.0000000 1.0000000 

0.40 0.9999964 0.9999964 1.0000000 1.0000000 

0.60 0.9999976 0.9999976 1.0000000 1.0000000 

0.80 0.9999988 0.9999988 1.0000000 1.0000000 

1.00 1.00000000 1.00000000 1.0000000 1.0000000 
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(b)= 10-4 and h= 0.01 

Table.1 (b) 

 

 

 

 

 

Example 2 : 

Consider the following homogeneous Singular perturbation problem from Bender and 

Orsag [10] ,p.480. Problem 9.17 with α =0: 

εy′′(�) + �′(�) − �(�)  = 0  0 ≤ � ≤ 1 with y(0) = 0 and y(1)  = 1 

The exact solution  is given by

)1
m

e2
m

(e

2)11(11)2
m

(e
y(x)






xm
e

m
e

xm
e  

Where 




2

411-
  1


m   ;





2

41-1-
  2


m  

Computational results for Example 2 are furnished   in table 2(a) and 2(b). 

 

 

 

 

 

 

 

 

x 
 

y(x) Exact 
solution =0.007 =0.008 -0.009 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9998016 0.9998477 0.9998792 1.0000000 

0.04 0.9999999 1.0000000 1.0000000 1.0000000 

0.06 1.0000000 1.0000000 1.0000000 1.0000000 

0.08 1.0000000 1.0000000 1.0000000 1.0000000 

0.10 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 1.0000000 1.0000000 1.0000000 1.0000000 

0.40 1.0000000 1.0000000 1.0000000 1.0000000 

0.60 1.0000000 1.0000000 1.0000000 1.0000000 

0.80 1.0000000 1.0000000 1.0000000 1.0000000 

1.00 1.00000000 1.00000000 1.0000000 1.0000000 
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Computational results for Example.2 

(a) =10-3, h=0.01.   Table. 2(a) 

x y(x) Exact 

solution =0.008 =0.009 =0.01 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3834784 0.3819605 0.3808348 0.3756784 

0.04 0.3834410 0.3833556 0.3832939 0.3832599 

0.06 0.3910826 0.3910290 0.3909866 0.3909945 

0.08 0.3989720 0.3989188 0.3988770 0.3988851 

0.10 0.4070216 0.4069688 0.4069269 0.4069350 

0.20 0.4497731 0.4497210 0.4496799 0.4496879 

0.40 0.5492185 0.5491707 0.5491330 0.5491404 

0.60 0.6706514 0.6706123 0.6705816 0.6705877 

0.80 0.8189330 0.8189092 0.8188905 0.8188942 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

(b) = 10-4  and h= 0.01:       

Table.2 (b) 

x y(x) Exact 

solution =0.007 =0.008 =0.009 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3754246 0.3754509 0.3754841 0.3753479 

0.04 0.3829308 0.3829373 0.3829417 0.3829296 

0.06 0.3906657 0.3906722 0.3906766 0.3906645 

0.08 0.3985569 0.3985633 0.3985675 0.3985557 

0.10 0.4066074 0.4066138 0.4066185 0.4066062 

0.20 0.4493662 0.4493724 0.4493767 0.4493649 

0.40 0.5488456 0.5488514 0.5488553 0.5488445 

0.60 0.6703477 0.6703524 0.6703555 0.6703469 

0.80 0.8187476 0.8187505 0.8187521 0.8187471 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 
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Example 3 

Consider the following non-homogeneous Singular perturbation problem 

�y''(�) + �′(�) = 1 + 2�,    0 ≤ � ≤ 1 with y(0) = 0 and y(1)  = 1  

The exact solution is given by y(�)  =  x(� + 1-2�)  + (2�-1)
(1-exp(-x/�))

(1-exp(-1/�))
 

The computational results are presented in Table 3(a) and 3(b) for =10-3, 10-4  respectively. 

(a) = 10-4 and h=0.01                Table 3(a) 

x 
 

y(x) 
Exact solution =0.009 =0.008 =0.007 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 -0.9648339 -0.9674433 -0.9693918 -0.9776401 

0.04 -0.9558469 -0.9561648 -0.9564114 -0.9564800 

0.06 -0.9340471 -0.9343091 -0.9345188 -0.9345200 

0.08 -0.9112990 -0.9115545 -0.9117596 -0.9117600 

0.10 -0.8877492 -0.8879992 -0.8881995 -0.8882000 

0.20 -0.7579996 -0.7582219 -0.7583995 -0.7584000 

0.40 -0.4385004 -0.4386670 -0.4387995 -0.4388000 

0.60 -0.0390007 -0.0391119 -0.0391996 -0.0391999 

0.80 0.4404994 0.4404438 0.4404002 0.4404000 

1.00 1.0000000 1.00000000 1.00000000 1.00000000 

(b) =0.001, h=0.01                       Table 3(b) 

X 
 

y(x) Exact solution 
=0.008 =0.009 =0.01 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 -0.9794212 -0.9792020 -0.9792610 -0.9794040 

0.04 -0.6581250 -0.9581596 -0.9581869 -0.9582080 

0.06 -0.9361311 -0.9361844 -0.9361909 -0.9362120 

0.08 -0.9133368 -0.9133694 -0.9133958 -0.9134160 

0.10 -0.8897421 -0.8897744 -0.8897998 -0.8898200 

0.20 -0.7597710 -0.7597994 -0.7598217 -0.7598400 

0.40 -0.4398281 -0.4398495 -0.4398661 -0.4398800 

0.60 -0.0398852 -0.0398996 -0.0399109 -0.0399199 

0.80 0.4400563 0.4400498 0.4400447 0.4400400 

1.00 1.00000000 1.00000000 1.00000000 1.00000000 
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Discussion &Conclusion: 

In contrast with the direct methods, numerical methods are not expected to terminate in a 
finite number of steps, starting from an initial approximate solution if available.  An 
approximate solution is as near as to the exact solution. But there is a possibility of an error.  
Our main aim in the numerical analysis is to reduce the possibility of error in all the aspects 
so that there is a good   equilibrium   with the numerically computed solution and closed form 
solution. 
Numerical Integration method implemented for a two point boundary value problem.   After  
deriving  the calculations we are observed that numerically computed values are  shown to be  
good approximation to the selected problems and also the values  which are compared with 
the closed form solutions available in the literature.  It is observed that the numerically 
obtained results are in good agreement with the analytical solutions with reasonable accuracy. 
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